Optical aperture synthesis with electronically connected telescopes

نویسندگان

  • Dainis Dravins
  • Tiphaine Lagadec
  • Paul D. Nuñez
چکیده

Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a Fringe Sensor based on 3x3 Fiber Optic Coupler for Space Interferometry

Large stellar telescope is indispensable for astronomy. Aperture synthesis is a well-known technique to simulate a large space telescope by an array of small telescopes. Condition for aperture synthesis is that the light of the telescopes have to be combined coherently. Therefore, an interferometric Fringe Sensor (FS) to detect and stabilize the Optical Path Difference (OPD) between light from ...

متن کامل

Alternative fringe sensor for DARWIN mission

Large stellar telescope is indispensable for astronomy. Aperture synthesis is a well-known technique to simulate a large space telescope by an array of small telescopes. Condition for aperture synthesis is that the light of the telescopes have to be combined coherently. Therefore, an interferometric Fringe Sensor (FS) to detect and stabilize the Optical Path Difference (OPD) between light from ...

متن کامل

Polarimetric Calibration of Large-Aperture Telescopes II: The sub-aperture method

A new method for absolute polarimetric calibration of large telescopes is presented. The proposed method is highly accurate and is based on the calibration of a small sub-aperture, which is then extended to the full system by means of actual observations of an astronomical source. The calibration procedure is described in detail along with numerical simulations that explore its robustness and a...

متن کامل

Emerging trends of optical interferometry in astronomy

The current status of the high spatial resolution imaging interferometry in optical astronomy is reviewed in the light of theoretical explanation, as well as of experimental constraints that exist in the present day technology. The basic mathematical interlude pertinent to the interferometric technique and its applications in astronomical observations using both single aperture, as well as dilu...

متن کامل

Iac-08-c1.8.5 Optical Beam Control for Imaging Spacecraft with Large Apertures

This paper discusses optical beam control using adaptive optics for imaging spacecraft with large aperture telescopes. The segmented mirror alignment and active mirror surface control are achieved by novel wavefront sensing and control techniques. The experimental testbed and test results are also presented to demonstrate the adaptive optics techniques for large-aperture segmented mirrors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015